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We study the dynamics of a trapped, charged Brownian particle in the presence of a time-dependent mag-
netic field. We calculate work distributions for different time-dependent protocols numerically. In our problem,
thermodynamic work is related to variation of the vector potential with time as opposed to the earlier studies
where the work is related to time variation of the potentials, a quantity that depends only on the coordinates of
the particle. Using the Jarzynski and the Crooks equalities, we show that the free energy of the particle is
independent of the magnetic field, thus complementing the Bohr–van Leeuwen theorem. We also show that our
system exhibits a parametric resonance in a certain parameter space.
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Equilibrium statistical mechanics provides us an elegant
framework to explain the properties of a broad variety of
systems in equilibrium. Close to equilibrium the linear re-
sponse formalism is very successful in the form of the
fluctuation-dissipation theorem and Onsager’s reciprocity re-
lations. But no such universal framework exists to study sys-
tems driven far away from equilibrium. Needless to say,
most processes that occur in nature are far from equilibrium.
In recent years there has been considerable interest in the
nonequilibrium statistical mechanics of small systems. This
has led to the discovery of several rigorous theorems, called
fluctuation theorems �FTs� and related equalities �1–11� for
systems far away from equilibrium. Some of these theorems
have been verified experimentally �12–16� on single nano-
systems in physical environments where fluctuations play a
dominant role. We will focus on the Jarzynski equality �4�
and Crooks equality �5�, which deal with systems that are
initially in thermal equilibrium and are driven far away from
equilibrium irreversibly. The Jarzynski identity relates the
free energy change ��F� of the system when it is driven out
of equilibrium by perturbing its Hamiltonian �H�� with an
externally controlled time-dependent protocol ��t� to the
thermodynamic work �W� done on the system, given by

W = �
0

�

�̇
�H�

��
dt , �1�

over a phase space trajectory. Here � is the time through
which the system is driven. The Jarzynski identity is

�e−�W� = e−��F. �2�

The angular brackets denote the average over all possible
realizations of a process that takes the system from the initial
equilibrium state to a final state at time �. The Crooks equal-
ity concerns the ratio of the work distributions Pf and Pb.
Here the subscripts f and b refer to the externally controlled
forward and backward protocols, respectively, by which the
the system evolves. This relation is given by

Pf�W�
Pb�− W�

= e�Wd, �3�

Here, the dissipative work Wd=W−Wr and Wr is the revers-
ible work, which is same as the free energy difference ��F�
between the initial and the final states of the system when
driven through a reversible, isothermal path. If the system is
driven reversibly all along the path, the work distribution is
��W−�F�, Wd=0, and Pf = Pb. Thus, the above identities are
trivially true for a reversibly driven system. The Jarzynski
identity follows from Eq. �3�. The Crooks relation follows
from a more general Crooks identity which relates the ratio
of the work probabilities of the forward reverse paths to the
dissipative work expended along the forward trajectory. One
can also obtain the free energy difference by using the exact
fluctuation theorem. The theorem further gives conditions on
external protocols depending on the symmetry of the under-
lying potential �17�.

Here, we will study the applicability of the Jarzynski and
Crooks equalities in the case of a velocity-dependent as well
as a time-dependent Lorentz force, which is derivable from a
generalized potential U=q��−A�t� ·v�. Here, A is a time-
dependent vector potential, � is a scalar potential, q is the
charge of the particle, and v is its velocity. Different time-
dependent protocols for magnetic fields are considered. Con-
sequently, we find that the free energy differences obtained
using the Jarzynski and Crooks equalities are consistent with
the prediction from the Bohr–van Leeuwen theorem �18–20�.
This theorem states that in the case of classical systems the
free energy is independent of magnetic field and hence there
is an absence of diamagnetism in classical thermodyanamical
equilibrium systems. We finally also show that our system, in
the presence of an ac magnetic field, exhibits parametric
resonance in a certain parameter regime.

In an earlier related work �20,21�, charged particle dy-
namics in the overdamped limit is studied in the presence of
a harmonic trap and static magnetic field. The work distribu-
tion was obtained analytically for different protocols. It is
shown that the work distribution depends explicitly on the
magnetic field but not the free energy difference ��F�.
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The model Hamiltonian for our isolated system is

H =
1

2m
�	px +

qB�t�y
2


2

+ 	py −
qB�t�x

2

2� +

1

2
k�x2 + y2� ,

�4�

where k is the stiffness constant of harmonic confinement.
The magnetic field B�t� is applied in the z direction. The x
and y components of the vector potential, Ax Ay are given by
−qB�t�y /2 and qB�t�x /2, respectively. We have chosen a
symmetric gauge here. The above Hamiltonian remains in-
variant under time-reversal symmetry. In this case, however,
in addition to changing t→−t we must reverse the sign of the
magnetic fields. This implies that the externally controlled
protocol B under time reversal becomes −B �5,22–24�. The
particle-environment interaction is modeled via a Langevin
equation including inertia �25�, namely,

mẍ =
q

2
�yḂ�t� + 2ẏB�t�� − kx − �ẋ + �x�t� , �5�

mÿ = −
q

2
�xḂ�t� + 2ẋB�t�� − ky − �ẏ + �y�t� , �6�

where � is the friction coefficient and �x and �y are the
Gaussian white noise along the x and y directions, respec-
tively. This thermal noise has the following properties:

��i� = 0, ��i�t�� j�t��� = �ij2�kBT��t − t�� , �7�

so that the system approaches a unique equilibrium state in
the absence of time-dependent potentials. Denoting the pro-
tocol ��t�= �q /2�B�t�, the thermodynamic work done by an
external magnetic field on the system up to time � is

W = −
q

2
�

0

�

�xẏ − yẋ�Ḃ�t�dt . �8�

We want to emphasize that this thermodynamic work is re-
lated to the time variation of the vector potential and can be
identified as the time variation of the magnetic potential
−� ·B, W=−�0

�� · �dB /dt�dt, where the induced magnetic
moment is �q /2��xẏ−yẋ�= �q /2��r	v�. To obtain the value
of the work and its distribution, we have solved Eqs. �5� and
�6� numerically using the Verlet algorithm �26�. We first
evolve the system upto a large time greater than the typical
relaxation time so that the system is in equilibrium, and then
apply a time-dependent protocol for the magnetic field. We
have calculated values of the work numerically for 105 dif-
ferent realizations to get better statistics. The values of work
obtained for different realizations can be viewed as random
samples from the probability distribution P�W�. We have
fixed the friction coefficient, mass, charge, and kBT to be
unity. All the physical parameters are taken in dimensionless
units.

First we have taken the magnetic field to vary linearly in
time, i.e., B=B0�t /��ẑ. Work distributions for both forward
and backward protocols are obtained. In Fig. 1 we have plot-
ted the distributions Pf�W� and Pb�−W�, for forward and
backward protocols, respectively, which are depicted in the
insets of Fig. 1.

Using the Jarzynski equality �Eq. �2�� we computed the
free energy difference �F. We obtained �e−�W� to be unity
�1.0
0.04� implying that �F=0. It may be noted that �F
=F�B�−F�0�, where B is the value of the field at the end of
the protocol. In the begining of the protocol, the value of B is
zero. For different values of the final magnetic field we ob-
tained �F=0 within our numerical accuracy. This implies
that the free energy itself �and not the free energy difference�
is independent of the magnetic field, thereby satisfying the
Bohr–van Leeuwen theorem as stated earlier. We can also
employ Crooks equality �Eq. �3�� to determine the free en-
ergy difference. It follows from Crooks equality that the Pf
and Pb distributions cross at value W=�F. This value, where
the two distributions cross each other �that is, W=0�, can be
readily inferred from Fig. 1. This again suggests that �F
=0, which is consistent with the result obtained using Jarzyn-
ski equality.

To strengthen our assertion �that is, that the free energy is
independent of magnetic field� further, in Figs. 2 and 3 we
have plotted Pf�W� and Pb�−W� for two different protocols
as shown in the insets of the corresponding figures. For Fig.
3 we have considered a sinusoidally varying magnetic field
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FIG. 1. �Color online� Forward Pf�W� and backward Pb�−W�
work probability distributions for a ramped magnetic field.
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FIG. 2. �Color online� Pf�W� and Pb�−W� for symmetric ramp
for B�t�.
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B=B1 sin �t in the z direction. From the crossing point of Pf
and Pb, we observe that �F=0, consistent with the earlier
result.

In Fig. 4 we have plotted Pf�W� and Pb�−W�e�Wd, corre-
sponding to the protocol shown in Fig. 3. The two graphs are
identical �within numerical error�, thus verifying Crooks
equality. It may be noted that the reverse protocol also im-
plies reversing the magnetic field �27�. In all our figures the
distribution of work is asymmetric and depends on the mag-
netic field protocol explicitly, as opposed to �F. Moreover,
all the distributions show a significant tail in the negative
work region. This is necessary so as to satisfy the Jarzynski
equality.

We now discuss very briefly the occurrence of parametric
resonance �28� in our system in the presence of a sinu-
soidally oscillating magnetic field B�t�=B1 sin �t. In the
parameter range q1B1 /4
2L1−�1�0 where L1=1+2�k1

−�1
2� /q1

2B1
2 �see the Appendix�, our system exhibits instabil-

ity. Here k1=k /m, �1=� /2m, and q1=q /2m. The external
parametric magnetic field injects energy into the system, and

this pumping is expected to be strongest near twice the sys-
tem frequency �
L1�. The trajectory of the Brownian particle
grows exponentially in time, also exhibiting oscillatory mo-
tion at twice the frequency of external magnetic field. This is
shown in Fig. 5, where the coordinates of the particle and the
protocol are plotted as a function of time. The parameters are
B1=60 and �=1. For these graphs, the noise strength kBT is
taken as 1. In the presence of this instability �large variation
in coordinate values�, it becomes difficult to calculate work
distributions as it requires a large number of realizations and
better accuracy. Further work in analyzing the nature of the
parametric resonance and associated work distributions is in
progress.

In conclusion, by considering the dynamics of a trapped
charged Brownian particle in a time-dependent magnetic
field we have verified the Jarzynski and Crooks equalities.
As a by-product our result complements Bohr–van Leeuwen
theorem. Work done on the system by the external field
arises due to the time variation of the vector potential. This is
in contrast to earlier studied models where the input energy
to the system comes from time variation of the coordinate-
dependent potentials. Finally, we have discussed very briefly
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FIG. 4. �Color online� Pf�W� and Pb�−W�e�Wd plotted
together.

-0.4 -0.2 0 0.2 0.4 0.6
W

0

0.5

1

1.5

2

2.5

3
P f(W

),
P

b(-
W

)

P
f
(W)

P
b
(-W)

5 10
-4
-2

0
2
4

B
f

5 10
t

-2
0
2
4
6
8

-B
b

FIG. 3. �Color online� Pf�W� and Pb�−W� for oscillatory mag-
netic field.
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the occurrence of parametric resonance in our system. Our
results are amenable to experimental verification.

APPENDIX

In the presence of an oscillatory magnetic field B�t�
=B1 sin �t, the mean values of coordinates �x� and �y� of the
particle �averaged over thermal noise� obey the following
equation for z= �x�+ i�y�:

mz̈ + �� + iqB1 sin �t�ż + 	k + i
qB1�

2
cos �t
z = 0.

�A1�

With k=mk1, �=m��, and q=mq� the above equation be-
comes

z̈ + ��� + iq�B1 sin �t�ż + 	k1 + i
q�B1�

2
cos �t
z = 0.

�A2�

Now, using the following transformation:

z�t� = 
�t�exp	−
1

2
�t

��� + iq�B1 sin �t�dt
 , �A3�

Eq. �A2� becomes


̈ + 	k1 −
1

4
��� + iq�B1 sin �t�2

 = 0. �A4�

Redefining �� and q� as �1=�� /2 and q1=q� /2, we get


̈ + �k1 − ��1 + iq1B1 sin �t�2�
 = 0. �A5�

Again, after transforming t as t=
2t1 /q1B1−� /2� and � as
�=�1q1B1 /
2, we get

d2


dt1
2 + �L1 + cos 2�1t1 + i� cos �1t1�
 = 0, �A6�

where L1=1+2�k1−�1
2� /q1

2B1
2 and �=4�1 /q1B1. For large B1,

� is small and hence i� cos �1t1 can be treated as a pertur-
bative term as long as �1 is far from 2
L1. The condition
L1�1 should be maintained. Thus 
 can be expanded as 

=
0+�
1+¯. Using this in Eq. �A6�, we get �keeping only
the �0 order term�,

d2
0

dt1
2 + �L1 + cos 2�1t1�
0 = 0. �A7�

This exhibits parametric resonance �24� when �1�
L1. Near
resonating frequency, 
0 varies as 
0�est1, where s
�1 /4
L1. Hence, z will grow exponentially, if st1−�1t�0,
i.e., �q1B1 /4
2L1��t+� /2��−�1t�0.The condition given
above can be maintained if q1B1 /4
2L1−�1�0. For small
amplitude of the magnetic field, the trajectories of the par-
ticles are stable.
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